Reference: Torres-Machorro AL, et al. (2010) Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 34(1):59-86

Reference Help

Abstract

The study of genomic organization and regulatory elements of rRNA genes in metazoan paradigmatic organisms has led to the most accepted model of rRNA gene organization in eukaryotes. Nevertheless, the rRNA genes of microbial eukaryotes have also been studied in considerable detail and their atypical structures have been considered as exceptions. However, it is likely that these organisms have preserved variations in the organization of a versatile gene that may be seen as living records of evolution. Here, we review the organization of the main rRNA transcription unit (rDNA) and the 5S rRNA genes (5S rDNA). These genes are reiterated in the genome of microbial eukaryotes and may be coded alone, in tandem repeats, linked to each other or linked to other genes. They may be found in the chromosome or extrachromosomally in linear or circular units. rDNA coding regions may contain introns, sequence insertions, protein-coding genes or additional spacers. The 5S rDNA can be found in tandem repeats or genetically linked to genes transcribed by RNA polymerases I, II or III. Available information from about a hundred microbial eukaryotes was used to review the unexpected diversity in the genomic organization of rRNA genes.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Torres-Machorro AL, Hernandez R, Cevallos AM, Lopez-Villasenor I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference