Reference: Chen BJ, et al. (2009) Harnessing gene expression to identify the genetic basis of drug resistance. Mol Syst Biol 5:310

Reference Help

Abstract


The advent of cost-effective genotyping and sequencing methods have recently made it possible to ask questions that address the genetic basis of phenotypic diversity and how natural variants interact with the environment. We developed Camelot (CAusal Modelling with Expression Linkage for cOmplex Traits), a statistical method that integrates genotype, gene expression and phenotype data to automatically build models that both predict complex quantitative phenotypes and identify genes that actively influence these traits. Camelot integrates genotype and gene expression data, both generated under a reference condition, to predict the response to entirely different conditions. We systematically applied our algorithm to data generated from a collection of yeast segregants, using genotype and gene expression data generated under drug-free conditions to predict the response to 94 drugs and experimentally confirmed 14 novel gene-drug interactions. Our approach is robust, applicable to other phenotypes and species, and has potential for applications in personalized medicine, for example, in predicting how an individual will respond to a previously unseen drug.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Chen BJ, Causton HC, Mancenido D, Goddard NL, Perlstein EO, Pe'er D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference