Reference: Wang H, et al. (2009) Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLoS Biol 7(9):e1000189

Reference Help

Abstract

In yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1. The Rpd3 histone deacetylase complex is also involved. Cln3 binds to SBF at the CLN2 promoter, and removes previously bound Whi5 and histone deacetylase. Adding extra copies of the SBF binding site to the cell delays Start, possibly by titrating Cln3. Since Rpd3 is the yeast ortholog of mammalian HDAC1, there is now a virtually complete analogy between the proteins regulating cell cycle entry in yeast (SBF, Cln3, Whi5 and Stb1, Rpd3) and mammals (E2F, Cyclin D, Rb, HDAC1). The cell may titrate Cln3 molecules against the number of SBF binding sites, and this could be the underlying basis of the size-control mechanism for Start.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Wang H, Carey LB, Cai Y, Wijnen H, Futcher B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference