Take our Survey

Reference: Yang C, et al. (2010) Improved methods for expression and purification of Saccharomyces cerevisiae TFIIF and TFIIH; Identification of a functional Escherichia coli promoter and internal translation initiation within the N-terminal coding region of the TFIIF TFG1 subunit. Protein Expr Purif 70(2):172-178

Reference Help

Abstract


The basal RNA polymerase II (RNAPII) transcription machinery is composed of RNAPII and the general transcription factors (TF) TATA binding protein (TBP), TFIIB, TFIIE, TFIIF and TFIIH. Due to the powerful genetic and molecular approaches that can be utilized, the budding yeast Saccharomyces cerevisiae has proven to be an invaluable model system for studies of the mechanisms of RNAPII transcription. Complementary biochemical studies of the S. cerevisiae basal transcription machinery, however, have been hampered by difficulties in the purification of TFIIF and TFIIH, most notably due to the severe toxicity of the TFIIF Tfg1 subunit in Escherichia coli and the complexity of the purification scheme for native TFIIH. Here, we report the elimination of TFG1-associated toxicity in E. coli, the identification and removal of a functional E. coli promoter and internal translation initiation within the N-terminal coding region of TFG1, and the efficient production and two-step purification of recombinant TFIIF complexes. We also report conditions for the efficient two-step tandem affinity purification (TAP) of holo-TFIIH, core TFIIH and TFIIK complexes from yeast whole cell extracts.

Reference Type
Journal Article
Authors
Yang C, Khaperskyy DA, Hou M, Ponticelli AS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference