Take our Survey

Reference: Limson MV and Sweder KS (2010) Rapamycin inhibits yeast nucleotide excision repair independently of tor kinases. Toxicol Sci 113(1):77-84

Reference Help

Abstract


The yeast target of rapamycin kinases, Tor1 and Tor2, belong to the phosphatidylinositol 3-kinase related family of proteins, which are involved in the cellular response to DNA damage and changes in nutrient conditions. In contrast to yeast, many eukaryotes possess a single Tor kinase. Regardless of the number of Tor kinases in an organism, two distinct complexes involving Tor proteins exist in eukaryotes, TORC1 and TORC2. The yeast TORC1, containing Tor1 or Tor2, is sensitive to the antibiotic rapamycin. The yeast TORC2 is insensitive to rapamycin. We examined the influence of rapamycin treatment upon yeast transcription-coupled nucleotide excision repair in a gene transcribed by RNA polymerase II. We also examined tor mutants for their ability to perform transcription-coupled repair in the absence or presence of rapamycin. Ostensibly lacking TORC1 and TORC2 function, a tor1tor2(ts) mutant grown at the nonpermissive temperature exhibited similar rates of repair as the wild-type strain. However, repair of both strands in genes decreases in the wild-type strain and the tor1tor2(ts) mutant exposed to rapamycin. Rapamycin may be inhibiting DNA repair independently of the Tor kinases. In yeast, FPR1 encodes the rapamycin-binding protein Fpr1 that inhibits the TORC1 kinase in the presence of rapamycin. Fap1 competes with rapamycin for Fpr1 binding. Deletion of the FPR1 or FAP1 gene abolishes the inhibitory effect of rapamycin on repair. Thus, the decreased repair observed following rapamycin treatment is independent of TORC1/2 function and likely due to a function of Fap1. We suggest that Fap1 and peptidyl prolyl isomerases, particularly Fpr1, function in the cellular response to genotoxic stress. Our findings have clinical implications for genetic toxicities associated with genotoxic agents when co-administered with rapamycin.

Reference Type
Journal Article
Authors
Limson MV, Sweder KS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference