Reference: Dranginis AM (1990) Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature 347(6294):682-5

Reference Help

Abstract


The mating-type locus (MAT) encodes several DNA-binding proteins, which determine the three cell types of Saccharomyces cerevisiae: the a and alpha haploid cell types, and the a/alpha diploid cell type. One of the products of MAT, alpha 2, functions in two cell types. In alpha cells, alpha 2 represses the a-specific genes by binding to the operator as a dimer. In a/alpha diploid cells, alpha 2 acts with a1, a product of the other MAT allele, to repress a different set of genes, the haploid-specific genes. Until now, the nature of the interaction between a1 and alpha 2 was not known, although it had been suggested that alpha 2 may form a heterodimer with a1. I show, by using proteins synthesized in vitro, that a1 and alpha 2 bind the operator of a haploid-specific gene as a heterodimer. The ability of alpha 2 to form both homodimers and heterodimers with a1, each with a different DNA-binding specificity, explains the dual regulatory functions of alpha 2. This is the first example of regulation by heterodimerization among homeobox-containing proteins, a class that includes proteins responsible for the specification of segment identity in Drosophila, mammals and other eukaryotes.

Reference Type
Journal Article
Authors
Dranginis AM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference