Reference: Szentpetery Z, et al. (2009) Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol 10:67

Reference Help

Abstract

ABSTRACT: BACKGROUND: Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a critically important regulatory phospholipid found in the plasma membrane of all eukaryotic cells. In addition to being a precursor of important second messengers, PtdIns(4,5)P2 also regulates ion channels and transporters and serves the endocytic machinery by recruiting clathrin adaptor proteins. Visualization of the localization and dynamic changes in PtdIns(4,5)P2 levels in living cells is critical to understanding the biology of PtdIns(4,5)P2. This has been mostly achieved with the use of the pleckstrin homology (PH) domain of PLCdelta1 fused to GFP. Here we report on a comparative analysis of several recently-described yeast PH domains as well as the mammalian Tubby domain to evaluate their usefulness as PtdIns(4,5)P2 imaging tools. RESULTS: All of the yeast PH domains that have been previously shown to bind PtdIns(4,5)P2 showed plasma membrane localization but only a subset responded to manipulations of plasma membrane PtdIns(4,5)P2. None of these domains showed any advantage over the PLCdelta1PH-GFP reporter and were compromised either in their expression levels, nuclear localization or by causing peculiar membrane structures. In contrast, the Tubby domain showed high membrane localization consistent with PtdIns(4,5)P2 binding and displayed no affinity for the soluble headgroup, Ins(1,4,5)P3. Detailed comparison of the Tubby and PLCdelta1PH domains showed that the Tubby domain has a higher affinity for membrane PtdIns(4,5)P2 and therefore displays a lower sensitivity to report on changes of this lipid during phospholipase C activation. CONCLUSIONS: These results showed that both the PLCdelta1PH-GFP and the GFP-Tubby domain are useful reporters of PtdIns(4,5)P2 changes in the plasma membrane, with distinct advantages and disadvantages. While the PLCdelta1PH-GFP is a more sensitive reporter, its Ins(1,4,5)P3 binding may compromise its accuracy to measure PtdIns(4,5)P2 changes. The Tubby domain is more accurate to report on PtdIns(4,5)P2 but its higher affinity and lower sensitivity may limit its utility when phospholipase C activation is only moderate. These studies also demonstrated that similar changes in PtdIns(4,5)P2 levels in the plasma membrane can differentially regulate multiple effectors if they display different affinities to PtdIns(4,5)P2.

Reference Type
Journal Article
Authors
Szentpetery Z, Balla A, Kim YJ, Lemmon MA, Balla T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference