Take our Survey

Reference: Baudouin-Cornu P, et al. (2009) Development of a new method for absolute protein quantification on 2-D gels. Proteomics 9(20):4606-15

Reference Help

Abstract

With the development of systems biology projects aimed at modeling the cell, accurate and absolute measurements of cellular protein concentrations are increasingly important. However, methods for absolute quantification at the proteomic level remain rare. Using the yeast Saccharomyces cerevisiae, we propose a new method based on the radioactive labeling with an (35)S compound and 2-D PAGE. The principle is simple: cells are grown for more than four generations in the presence of a unique sulfur source labeled at a defined specific radioactivity, ensuring that more than 90% of the proteins are labeled at the same specific radioactivity as the sulfur source. After separation of (35)S-labeled proteins on 2-D gels, each protein is counted. The amount of each protein present in the gel is then calculated, from which is deduced the amount of each protein per cell. The method, limited to soluble and abundant proteins visible on 2-D gels, is simple, precise and reproducible and does not require an internal standard. We use it to compare the amounts of proteins in two growth conditions: 100 muM sulfate or 500 muM methionine. Up to now, we only had transcriptional data on the expression of these proteins in both conditions.

Reference Type
Journal Article
Authors
Baudouin-Cornu P, Lagniel G, Chedin S, Labarre J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference