Reference: Motlekar N, et al. (2009) Discovery of Chemical Modulators of a Conserved Translational Control Pathway by Parallel Screening in Yeast. Assay Drug Dev Technol 7(5):479-494

Reference Help

Abstract

Eukaryotic initiation factor 2 (eIF2) B is a guanine nucleotide exchange factor that plays a central role in translation initiation and its control, especially in response to diverse cellular stresses. In addition, inherited mutations in human eIF2B subunits cause a fatal brain disorder commonly called childhood ataxia with central nervous system hypomyelination or leukoencephalopathy with vanishing white matter. In yeast, inhibiting activity of eIF2B up-regulates expression of the transcriptional activator general control nondepressible (GCN) 4. We report here evaluation of high-throughput screening (HTS) using a yeast-based reporter gene assay, in which strains containing either wild-type or a mutant eIF2B were screened in parallel to identify compounds modifying eIF2B-dependent responses. The goals of the HTS were twofold: first, to discover compounds that restore normal function to mutant eIF2B, which may have therapeutic utility for the fatal human disease; and second, to identify compounds that activate a GCN4 response, which might be useful experimental tools. The HTS assay measured cell growth by absorbance, and activation of gene expression via a beta-galactosidase reporter gene fusion. Because mutant eIF2B activates GCN4 in the absence of stress inducers, the mutant strain was screened for reduction in GCN4 activation. HTS revealed apparent mutant-selective inhibitors but did not reliably predict selectivity as these hits affected both wild-type and mutant strains equally on dose-response confirmation. Wild-type strain results from the HTS identified two GCN4 response activators, both of which were confirmed to be wild-type selective in dose-response testing, suggesting that these compounds may activate GCN4 by a mechanism that down-regulates eIF2B activity.

Reference Type
Journal Article
Authors
Motlekar N, de Almeida RA, Pavitt GD, Diamond SL, Napper AD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference