Reference: Friedel CC, et al. (2009) Bootstrapping the interactome: unsupervised identification of protein complexes in yeast. J Comput Biol 16(8):971-87

Reference Help

Abstract

Abstract Protein interactions and complexes are important components of biological systems. Recently, two genome-wide applications of tandem affinity purification (TAP) in yeast have increased significantly the available information on interactions in complexes. Several approaches have been developed to predict protein complexes from these measurements, which generally depend heavily on additional training data in the form of known complexes. In this article, we present an unsupervised algorithm for the identification of protein complexes which is independent of the availability of such additional complex information. Based on a Bootstrap approach, we calculate intuitive confidence scores for interactions more accurate than all other published scoring methods and predict complexes with the same quality as the best supervised predictions. Although there are considerable differences between the Bootstrap and the best published predictions, the set of consistently identified complexes is more than four times as large as for complexes derived from one data set only. Our results illustrate that meaningful and reliable complexes can be determined from the purification experiments alone. As a consequence, the approach presented in this article is easily applicable to large-scale TAP experiments for any species even if few complexes are already known.

Reference Type
Journal Article
Authors
Friedel CC, Krumsiek J, Zimmer R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference