Take our Survey

Reference: Chang KJ, et al. (2009) Ntc90 is required for recruiting first step factor Yju2 but not for spliceosome activation. RNA 15(9):1729-39

Reference Help

Abstract

The Prp19-associated complex (NineTeen Complex [NTC]) is required for spliceosome activation by specifying interactions of U5 and U6 with pre-mRNA on the spliceosome after the release of U4. The NTC consists of at least eight protein components, including two tetratricopeptide repeat (TPR)-containing proteins, Ntc90 and Ntc77. Ntc90 has nine copies of the TPR with seven clustered in the carboxy-terminal half of the protein, and interacts with all identified NTC components except for Prp19 and Ntc25. It forms a stable complex with Ntc31, Ntc30, and Ntc20 in the absence of Ntc25, when other interactions between NTC components are disrupted. In this study, we used both biochemical and genetic methods to analyze the structure of Ntc90, and its function in maintaining the integrity of the NTC and in NTC-mediated spliceosome activation. Our results show that Ntc90 interacts with Ntc31, Ntc30, and other NTC components through different regions of the protein, and that its function may be regulated by Ntc31 and Ntc30. Ntc90 is not required for the association of Prp19, Ntc85, Ntc77, Ntc25, and Ntc20, or for their binding to the spliceosome. It is also not required for NTC-mediated spliceosome activation, but is required for the recruitment of Yju2, which is involved in the first catalytic reaction after the function of Prp2. Our results demonstrate a novel role of the NTC in recruiting splicing factors to the spliceosome after its activation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chang KJ, Chen HC, Cheng SC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference