Take our Survey

Reference: Deng Y, et al. (2009) Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole. J Biol Chem 284(35):23830-41

Reference Help

Abstract


In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body, and that the first step can occur without ubiquitin binding.

Reference Type
Journal Article
Authors
Deng Y, Guo Y, Watson H, Au WC, Shakoury-Elizeh M, Basrai MA, Bonifacino JS, Philpott CC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference