Reference: Kosugi S, et al. (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 106(25):10171-6

Reference Help

Abstract

The cell cycle-dependent nucleocytoplasmic transport of proteins is predominantly regulated by CDK kinase activities; however, it is currently difficult to predict the proteins thus regulated, largely because of the low prediction efficiency of the motifs involved. Here, we report the successful prediction of CDK1-regulated nucleocytoplasmic shuttling proteins using a prediction system for nuclear localization signals (NLSs). By systematic amino acid replacement analyses in budding yeast, we created activity-based profiles for different classes of importin-alpha-dependent NLSs that represent the functional contributions of different amino acids at each position within an NLS class. We then developed a computer program for prediction of the classical importin-alpha/beta pathway-specific NLSs (cNLS Mapper, available at http//nls-mapper.iab.keio.ac.jp/) that calculates NLS activities by using these profiles and an additivity-based motif scoring algorithm. This calculation method achieved significantly higher prediction accuracy in terms of both sensitivity and specificity than did current methods. The search for NLSs that overlap the consensus CDK1 phosphorylation site by using cNLS Mapper identified all previously reported and 5 previously uncharacterized yeast proteins (Yen1, Psy4, Pds1, Msa1, and Dna2) displaying CDK1- and cell cycle-regulated nuclear transport. CDK1 activated or repressed their nuclear import activity, depending on the position of CDK1-phosphorylation sites within NLSs. The application of this strategy to other functional linear motifs should be useful in systematic studies of protein-protein networks.

Reference Type
Journal Article
Authors
Kosugi S, Hasebe M, Tomita M, Yanagawa H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference