Reference: Dang Do AN, et al. (2009) eIF2{alpha} kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver. Physiol Genomics 38(3):328-41

Reference Help

Abstract


In eukaryotes, selective derepression of mRNA translation through altered utilization of upstream open reading frames (uORFs) or internal ribosomal entry sites (IRES) regulatory motifs following exposure to stress is regulated at the initiation stage through the increased phosphorylation of the eukaryotic initiation factor 2 on its alpha subunit (eIF2alpha). While there is only one known eIF2alpha kinase in yeast, general control nonderepressible 2 (GCN2), mammals have evolved to express at least four: GCN2, heme-regulated inhibitor kinase (HRI), double-stranded RNA-activated protein kinase (PKR) and PKR-like ER-resident kinase (PERK). So far, the main known distinction among these four kinases is their activation in response to different acute stressors. In the present study, we used the in situ perfused mouse liver model and hybridization array analyses to assess the general translational response to stress regulated by two of these kinases, GCN2 and PERK, and to differentiate between the downstream effects of activating GCN2 versus PERK. The resulting data showed that at least 2.5% of mouse liver mRNAs are subject to derepressed translation following stress. In addition, the data demonstrated that the eIF2alpha kinases, GCN2 and PERK, differentially regulate mRNA transcription and translation, which in the latter case suggests that increased eIF2alpha phosphorylation is not sufficient for derepression of translation. These findings open an avenue for more focused future research towards groups of mRNAs that code for the early cellular stress response proteins. Key words: mRNA translation, ER stress, amino acid deprivation, eIF2 phosphorylation.

Reference Type
Journal Article
Authors
Dang Do AN, Kimball SR, Cavener DR, Jefferson LS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference