Take our Survey

Reference: Struthers MS, et al. (2009) Functional homology of mammalian syntaxin 16 and yeast Tlg2p reveals a conserved regulatory mechanism. J Cell Sci 122(Pt 13):2292-9

Reference Help

Abstract


Membrane fusion in all eukaryotic cells is regulated by the formation of specific SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. The molecular mechanisms that control this process are conserved through evolution and require several protein families, including Sec1p/Munc18 (SM) proteins. Here, we demonstrate that the mammalian SNARE protein syntaxin 16 (Sx16, also known as Syn16) is a functional homologue of the yeast SNARE Tlg2p, in that its expression fully complements the mutant phenotypes of tlg2Delta mutant yeast. We have used this functional homology to demonstrate that, as observed for Tlg2p, the function of Sx16 is regulated by the SM protein Vps45p. Furthermore, in vitro SNARE-complex assembly studies demonstrate that the N-terminal domain of Tlg2p is inhibitory to the formation of SNARE complexes, and that this inhibition can be lifted by the addition of purified Vps45p. By combining these cell-biological and biochemical analyses, we propose an evolutionarily conserved regulatory mechanism for Vps45p function. Our data support a model in which the SM protein is required to facilitate a switch of Tlg2p and Sx16 from a closed to an open conformation, thus allowing SNARE-complex assembly and membrane fusion to proceed.

Reference Type
Journal Article
Authors
Struthers MS, Shanks SG, Macdonald C, Carpp LN, Drozdowska AM, Kioumourtzoglou D, Furgason ML, Munson M, Bryant NJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference