Take our Survey

Reference: Cheng JS, et al. (2009) Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Appl Microbiol Biotechnol 83(5):909-23

Reference Help

Abstract


The responses and adaptation mechanisms of the industrial Saccharomyces cerevisiae to vacuum fermentation were explored using proteomic approach. After qualitative and quantitative analyses, a total of 106 spots corresponding to 68 different proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The differentially expressed proteins were involved in amino acid and carbohydrate metabolisms, various signal pathways (Ras/MAPK, Ras-cyclic adenosine monophosphate, and HOG pathway), and heat shock and oxidative responses. Among them, alternations in levels of 17 proteins associated with carbohydrate metabolisms, in particular, the upregulations of proteins involved in glycolysis, trehalose biosynthesis, and the pentose phosphate pathway, suggested vacuum-induced redistribution of the metabolic fluxes. The upregulation of 17 heat stress and oxidative response proteins indicated that multifactors contributed to oxidative stresses by affecting cell redox homeostasis. Taken together with upregulation in 14-3-3 proteins levels, 22 proteins were detected in multispots, respectively, indicating that vacuum might have promoted posttranslational modifications of some proteins in S. cerevisiae. Further investigation revealed that the elevations of the differentially expressed proteins were mainly derived from vacuum stress rather than the absence of oxygen. These findings provide new molecular mechanisms for understanding of adaptation and tolerance of yeast to vacuum fermentation.

Reference Type
Journal Article
Authors
Cheng JS, Zhou X, Ding MZ, Yuan YJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference