Reference: Steere NA, et al. (2009) Functional screen of human MCM2-7 variant alleles for disease-causing potential. Mutat Res 666(1-2):74-8

Reference Help

Abstract


Origin licensing builds a fundamental basis for genome stability in DNA replication. Recent studies reported that deregulation of origin licensing is associated with replication stress in precancerous lesions. The heterohexameric complex of minichromosome maintenance proteins (MCM2-7 complex) plays an essential role in origin licensing. Previously, we reported the recovery of the first viable Mcm mutant allele (named Mcm4(Chaos3)) in mice. The Mcm4(Chaos3) allele destabilizes the MCM2-7 complex, leading to chromosome instability and the formation of spontaneous tumors in Mcm4(Chaos3) homozygous mice. Supporting our finding, a recent study reported that mice with reduced expression of MCM2 die with lymphomas within the first few months after birth. These data strongly suggest that mutant Mcm2-7 genes are cancer-causing genes with nearly complete penetrance in mice. This could be the case for humans as well. Nevertheless, related investigations have not been undertaken due to the essential nature of the MCM2-7 genes. To circumvent this problem, we focused on the variant alleles of human MCM2-7 genes derived from single nucleotide polymorphisms. We created a total of 14 variant alleles in the corresponding genes in Saccharomyces cerevisiae. The phenotypic consequence was assayed for minichromosome loss, a surrogate phenotype for genome instability and cancer susceptibility. This screen identified a MCM5 variant allele with pathogenic potential. This allele deserves further investigations on its effect on cancer development in human populations.

Reference Type
Journal Article
Authors
Steere NA, Yamaguchi S, Andrews CA, Liachko I, Nakamura T, Shima N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference