Reference: Malc E, et al. (2009) Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae. Mutat Res 669(1-2):95-103

Reference Help

Abstract

The proteasome plays fundamental roles in the removal of oxidized proteins and in normal degradation of short-lived proteins. Increasing evidence suggests that the proteasome may be an important factor in both oxidative stress response and cellular aging. Moreover, it was recently reported that proteasome inhibition leads to mitochondrial dysfunction. In this study, we have investigated whether proteasome impairment, caused by deletion of UMP1, a gene necessary for the 20S proteasome biogenesis, may influence the stability of the yeast mitochondrial genome. Here we show that an ump1Delta mutant displays enhanced mitochondrial point mutagenesis, measured by the frequency of oligomycin-resistant (Oli(r)) and erythromycin-resistant (Ery(r)) mutants, compared to that of the isogenic wild-type strain. Deletion of UMP1 significantly increases also the frequency of respiration-defective mutants having gross rearrangements of the mitochondrial genome. We show that this mitochondrial mutator phenotype of the ump1Delta strain is considerably reduced in the presence of a plasmid encoding Msh1p, the mitochondrial homologue of the bacterial mismatch protein MutS, which was shown previously to counteract oxidative lesion-induced instability of mtDNA. In search of the mechanism underlying the decreased stability of mtDNA in the ump1Delta deletion mutant, we have determined the level of reactive oxygen species (ROS) in the mutant cells and have found that they are exposed to endogenous oxidative stress. Furthermore, we show also that both cellular and intramitochondrial levels of Msh1p are significantly reduced in the mutant cells compared to the wild-type cells. We conclude, therefore, that both an increased ROS production and a markedly decreased level of Msh1p, a protein crucial for the repair of mtDNA, lead in S. cerevisiae cells with impaired proteasome activity to the increased instability of their mitochondrial genome.

Reference Type
Journal Article
Authors
Malc E, Dzierzbicki P, Kaniak A, Skoneczna A, Ciesla Z
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference