Take our Survey

Reference: Guzinska K, et al. (2009) Role of Plc1p in regulation of Mcm1p-dependent genes. FEMS Microbiol Lett 295(2):245-50

Reference Help

Abstract


In budding yeasts, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) and several inositol polyphosphate kinases represent a nuclear pathway for synthesis of inositol polyphosphates (InsPs), which are involved in several aspects of DNA and RNA metabolism, including transcriptional regulation. Plc1p-produced inositol trisphosphate (InsP(3)) is phosphorylated by Ipk2p/Arg82p to yield InsP(4)/InsP(5). Ipk2p/Arg82p is also a component of ArgR-Mcm1p complex that regulates transcription of genes involved in arginine metabolism. The role of Ipk2p/Arg82p in this complex is to stabilize the essential MADS box protein Mcm1p. Consequently, ipk2Delta cells display reduced levels of Mcm1p and attenuated expression of Mcm1p-dependent genes. Because plc1Delta cells display aberrant expression of several groups of genes, including genes involved in stress response, the objective of this study was to determine whether Plc1p also affects expression of Mcm1p-dependent genes. Here we report that not only ipk2Delta, but also plc1Delta cells display decreased expression of Mcm1p-dependent genes. However, Plc1p is not involved in stabilization of Mcm1p and affects transcription of Mcm1p-dependent genes by a different mechanism, probably involving regulation of chromatin remodeling complexes.

Reference Type
Journal Article
Authors
Guzinska K, Varghese R, Vancura A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference