Reference: Hou H, et al. (2009) Analysis of DHHC acyltransferases implies overlapping substrate specificity and a two-step reaction mechanism. Traffic 10(8):1061-73

Reference Help

Abstract

Asp-His-His-Cys (DHHC) cysteine-rich domain (CRD) acyltransferases are polytopic transmembrane proteins that are found along the endomembrane system of eukaryotic cells and mediate palmitoylation of peripheral and integral membrane proteins. Here, we address the in vivo substrate specificity of five of the seven DHHC acyltransferases for peripheral membrane proteins by an overexpression approach. For all analysed DHHC proteins we detect strongly overlapping substrate specificity. In addition, we now show acyltransferase activity for Pfa5. More importantly, the DHHC protein Pfa3 is able to trap several substrates at the vacuole. For Pfa3 and its substrate Vac8, we can distinguish two consecutive steps in the acylation reaction: an initial binding that occurs independently of its central cysteine in the DHHC box, but requires myristoylation of its substrate Vac8, and a DHHC-motif dependent acylation. Our data also suggest that proteins can be palmitoylated on several organelles. Thus, the intracellular distribution of DHHC proteins provides an acyltransferase network, which may promote dynamic membrane association of substrate proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hou H, John Peter AT, Meiringer C, Subramanian K, Ungermann C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference