Reference: Raveh-Sadka T, et al. (2009) Incorporating nucleosomes into thermodynamic models of transcription regulation. Genome Res 19(8):1480-96

Reference Help

Abstract

Transcriptional control is central to many cellular processes, and, consequently, much effort has been devoted to understanding its underlying mechanisms. The organization of nucleosomes along promoter regions is important for this process, since most transcription factors cannot bind nucleosomal sequences and thus compete with nucleosomes for DNA access. This competition is governed by the relative concentrations of nucleosomes and transcription factors and by their respective sequence binding preferences. However, despite its importance, a mechanistic understanding of the quantitative effects that the competition between nucleosomes and factors has on transcription is still missing. Here we use a thermodynamic framework based on fundamental principles of statistical mechanics to explore theoretically the effect that different nucleosome organizations along promoters have on the activation dynamics of promoters in response to varying concentrations of the regulating factors. We show that even simple landscapes of nucleosome organization reproduce experimental results regarding the effect of nucleosomes as general repressors and as generators of obligate binding cooperativity between factors. Our modeling framework also allows us to characterize the effects that various sequence elements of promoters have on the induction threshold and on the shape of the promoter activation curves. Finally, we show that using only sequence preferences for nucleosomes and transcription factors, our model can also predict expression behavior of real promoter sequences, thereby underscoring the importance of the interplay between nucleosomes and factors in determining expression kinetics.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Raveh-Sadka T, Levo M, Segal E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference