Take our Survey

Reference: Pandey G, et al. (2009) Incorporating functional inter-relationships into protein function prediction algorithms. BMC Bioinformatics 10:142

Reference Help

Abstract

ABSTRACT: BACKGROUND: Functional classification schemes (e.g. the Gene Ontology), that serve as the basis for annotation efforts in several organisms, are often the source of gold standard information for computational efforts at supervised protein function prediction. While successful function prediction algorithms have been developed, few previous efforts have utilized more than the protein-to-functional class label information provided by such knowledge bases. For instance, the Gene Ontology not only captures protein annotations to a set of functional classes, but it also arranges these classes in a DAG-based hierarchy that captures rich inter-relationships between different classes. These inter-relationships present both opportunities, such as the potential for additional training examples for small classes from larger related classes, and challenges, such as a harder to learn distinction between similar GO terms, for standard classification-based approaches. RESULTS: In this paper, we propose a method to enhance the performance of classification-based protein function prediction algorithms by addressing the issue of using these inter-relationships between functional classes constituting functional classification schemes. Using a standard measure for evaluating the semantic similarity between nodes in an ontology, we quantify and incorporate these inter-relationships into the $k$-nearest neighbor classifier. We present experiments on several large genomic data sets, each of which is used for the modeling and prediction of different sets of over hundred classes from the GO Biological Process ontology. The results show that this incorporation produces more accurate predictions for a large number of the functional classes considered, and also that the classes benefitted most by this approach are those containing the fewest members. In addition, we show how our proposed framework can be used for integrating information from the entire GO hierarchy for improving the accuracy of predictions made over a set of base classes. Finally, we provide qualitative and quantitative evidence that this incorporation of functional inter-relationships enables the discovery of interesting biology in the form of novel functional annotations for several yeast proteins, such as Sna4, Rtn1 and Lin1. CONCLUSIONS: We implemented and evaluated a methodology for incorporating inter-relationships between functional classes into a standard classification-based protein function prediction algorithm. Our results show that this incorporation can help improve the accuracy of such algorithms, and help uncover novel biology in the form of previously unknown functional annotations. The complete source code, a sample data set and additional files for this paper are available free of charge for non-commercial use at http://www.cs.umn.edu/vk/gaurav/functionalsimilarity/.

Reference Type
Journal Article
Authors
Pandey G, Myers CL, Kumar V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference