Take our Survey

Reference: Pereira E, et al. (2009) Conserved ATRMec1 phosphorylation-independent activation of Chk1 by single amino acid substitution in the GD domain. Cell Cycle 8(11):1788-93

Reference Help

Abstract

Chk1 is a conserved kinase that comprises the first line of defense against DNA damage and replication blocks. Chk1 consists of two primary domains, the well conserved N-terminal kinase domain and the non-catalytic C-terminal domain that contains the two highly conserved TRF and GD sub-domains. Several studies suggested that the C-terminus of Chk1 acts as an inhibitory domain and that phosphorylation of the C-terminus by ATR serves to activate Chk1 by relieving the inhibitory effect of the C-terminus on the N-terminal catalytic domain. However, work carried out in many systems showed that phosphorylation on ATR sites was necessary but not sufficient to increase Chk1 kinase activity. In a recent manuscript we described a single amino acid substitution at an invariant Leucine in the conserved GD domain of the yeast Chk1 C-terminus (L506R) that led to a Chk1 protein that no longer required ATR(Mec1) phosphorylation at conserved sites for its function, and relieved the requirement of an upstream mediator, Rad9 (53BP1 homolog), for Chk1 activation. Here we show that this single amino acid substitution in the GD domain also led to constitutive phosphorylation of yeast and human Chk1 on ATR(Mec1) sites, suggesting that the protein was in a conformation in which it could be readily phosphorylated by ATR(Mec1). Unlike the phospho-mimetic mutants in earlier studies, the L505R and L449R modifications led to increased Chk1 activity both in vitro and in vivo. Therefore, we have uncovered a conserved mechanism for Chk1 regulation separate from the role of known ATR phosphorylation sites.

Reference Type
Journal Article
Authors
Pereira E, Chen Y, Sanchez Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference