Take our Survey

Reference: Owen BA, et al. (2009) The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nat Struct Mol Biol 16(5):550-7

Reference Help

Abstract


Here we report that the human DNA mismatch complex MSH2-MSH3 recognizes small loops by a mechanism different from that of MSH2-MSH6 for single-base mismatches. The subunits MSH2 and MSH3 can bind either ADP or ATP with similar affinities. Upon binding to a DNA loop, however, MSH2-MSH3 adopts a single 'nucleotide signature', in which the MSH2 subunit is occupied by an ADP molecule and the MSH3 subunit is empty. Subsequent ATP binding and hydrolysis in the MSH3 subunit promote ADP-ATP exchange in the MSH2 subunit to yield a hydrolysis-independent ATP-MSH2-MSH3-ADP intermediate. Human MSH2-MSH3 and yeast Msh2-Msh6 both undergo ADP-ATP exchange in the Msh2 subunit but, apparently, have opposite requirements for ATP hydrolysis: ADP release from DNA-bound Msh2-Msh6 requires ATP stabilization in the Msh6 subunit, whereas ADP release from DNA-bound MSH2-MSH3 requires ATP hydrolysis in the MSH3 subunit. We propose a model in which lesion binding converts MSH2-MSH3 into a distinct nucleotide-bound form that is poised to be a molecular sensor for lesion specificity.

Reference Type
Journal Article
Authors
Owen BA, H Lang W, McMurray CT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference