Take our Survey

Reference: Roth KM, et al. (2009) Regulation of NAB2 mRNA 3'-end formation requires the core exosome and the Trf4p component of the TRAMP complex. RNA 15(6):1045-58

Reference Help

Abstract


The nuclear exosome functions in a variety of pathways catalyzing formation of mature RNA 3'-ends or the destruction of aberrant RNA transcripts. The RNA 3'-end formation activity of the exosome appeared restricted to small noncoding RNAs. However, the nuclear exosome controls the level of the mRNA encoding the poly(A)-binding protein Nab2p in a manner requiring an A(26) sequence in the mRNA 3' untranslated regions (UTR), and the activities of Nab2p and the exosome-associated exoribonuclease Rrp6p. Here we show that the A(26) sequence inhibits normal 3'-end processing of NAB2 mRNA in vivo and in vitro, and makes formation of the mature 3'-end dependent on trimming of the transcript by the core exosome and the Trf4p component of the TRAMP complex from a downstream site. The detection of mature, polyadenylated transcripts ending at, or within, the A(26) sequence indicates that exosome trimming sometimes gives way to polyadenylation of the mRNA. Alternatively, Rrp6p and the TRAMP-associated Mtr4p degrade these transcripts thereby limiting the amount of Nab2p in the cell. These findings suggest that NAB2 mRNA 3'-end formation requires the exosome and TRAMP complex, and that competition between polyadenylation and Rrp6p-dependent degradation controls the level of this mRNA.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Roth KM, Byam J, Fang F, Butler JS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference