Reference: Zhou T, et al. (2009) Translationally optimal codons associate with structurally sensitive sites in proteins. Mol Biol Evol 26(7):1571-80

Reference Help

Abstract

The mistranslation-induced-protein-misfolding hypothesis predicts that selection should prefer high-fidelity codons at sites at which translation errors are structurally disruptive and lead to protein misfolding and aggregation. To test this hypothesis, we analyzed the relationship between codon usage bias and protein structure in the genomes of four model organisms, E. coli, yeast, fly, and mouse. Using both the Mantel-Haenszel procedure, which applies to categorical data, and a newly developed association test for continuous variables, we find that translationally optimal codons associate with buried residues and also with residues at sites where mutations lead to large changes in free energy (DeltaDeltaG). In each species, only a subset of all amino acids show this signal, but most amino acids show the signal in at least one species. By repeating the analysis on a reduced data set that excludes inter-domain linkers, we show that our results are not caused by an association of rare codons with solvent-accessible linker regions. Finally, we find that our results depend weakly on expression level; the association between optimal codons and buried sites exists at all expression levels, but increases in strength as expression level increases.

Reference Type
Journal Article
Authors
Zhou T, Weems M, Wilke CO
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference