Take our Survey

Reference: Faust K, et al. (2009) Metabolic pathfinding using RPAIR annotation. J Mol Biol 388(2):390-414

Reference Help

Abstract

Metabolic databases contain information about thousands of small molecules and reactions, which can be represented as networks. In the context of metabolic reconstruction, pathways can be inferred by searching optimal paths in such networks. A recurrent problem is the presence of pool metabolites (e.g. water, energy carriers, co-factors), which are connected to hundreds of reactions, thus establishing irrelevant shortcuts between nodes of the network. One solution to this problem relies on weighted networks to penalize highly connected compounds. A more refined solution takes the chemical structure of reactants into account in order to differentiate between side and main compounds of a reaction. Thanks to an intensive annotation effort at KEGG, decompositions of reactions into reactant pairs (RPAIR) categorized by their role (main, trans, cofac, ligase, leave) are now available. The goal of this paper is to evaluate the impact of the RPAIR data on path finding in metabolic networks. To this end, we measure the impact of different parameters concerning the construction of the metabolic network: mapping of reactions and reactant pairs onto a graph, use of selected categories of reactant pairs, weighting schemes for compounds and reactions, removal of highly connected metabolites and reaction directionality. In total, we tested 104 combinations of parameters and identified their optimal values for path finding on the basis of 55 reference pathways from three organisms. The best-performing metabolic network combines the biochemical knowledge encoded by KEGG/RPAIR with a weighting scheme penalizing highly connected compounds. With this network, we could recover reference pathways from Escherichia coli with an average accuracy of 93% (32 pathways), from Saccharomyces cerevisiae with 66% (11 pathways) and from human with 70% (12 pathways). Our path finding approach is available as part of the Network Analysis Tools (NeAT): http://rsat.ulb.ac.be/neat/.

Reference Type
Journal Article
Authors
Faust K, Croes D, van Helden J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference