Take our Survey

Reference: Dove SK, et al. (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419(1):1-13

Reference Help

Abstract


PtdIns(3,5)P(2) is one of the seven regulatory PPIn (polyphosphoinositides) that are ubiquitous in eukaryotes. It controls membrane trafficking at multiple points in the endosomal/lysosomal system and consequently regulates the size, shape and acidity of at least one endo-lysosomal compartment. PtdIns(3,5)P(2) appears to exert this control via multiple effector proteins, with each effector specific for a subset of the various PtdIns(3,5)P(2)-dependent processes. Some putative PtdIns(3,5)P(2) effectors have been identified, including Atg18p-related PROPPIN [beta-propeller(s) that bind PPIn] proteins and the epsin-like proteins Ent3p and Ent5p, whereas others remain to be defined. One of the principal functions of PtdIns(3,5)P(2) is to regulate the fission/fragmentation of endo-lysosomal sub-compartments. PtdIns(3,5)P(2) is required for vesicle formation during protein trafficking between endo-lysosomes and also for fragmentation of endo-lysosomes into smaller compartments. In yeast, hyperosmotic stress accelerates the latter process. In the present review we highlight and discuss recent studies that reveal the role of the HOPS-CORVET complex and the vacuolar H(+)-ATPase in the process of endo-lysosome fission, and speculate on connections between these machineries and the Fab1p pathway. We also discuss new evidence linking PtdIns(3,5)P(2) and PtdIns5P to the regulation of exocytosis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference