Take our Survey

Reference: Sutani T, et al. (2009) Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol 19(6):492-7

Reference Help

Abstract

Sister chromatid cohesion, which is mediated by the cohesin complex, is vital for faithful segregation of chromosomes in mitosis and meiosis (reviewed in [1]). Cohesion is established during S phase, and this process requires the function of the acetyltransferase Eco1/Ctf7 [2-5]. The mechanism of the cohesion establishment is, however, still unclear. Here, we describe isolation and identification of genetic suppressors of budding yeast eco1-1 temperature-sensitive mutant. By using a recently described microarray-based method [6], we successfully mapped 11 intergenic suppressor mutations in two genes, wpl1 (also known as rad61) and pds5. Pds5 is a known accessory factor of cohesin complex [7-11], and we show that Wpl1/Rad61 protein forms a complex with Pds5 and colocalizes with cohesin on chromosomes, as its presumed human homolog Wapl [12, 13]. Impaired function of Wpl1-Pds5 complex makes Eco1 dispensable for cell survival. We also provide evidence that Wpl1 is required for efficient association of cohesin with G2 phase chromosomes and that Eco1 promotes dissociation of Wpl1-Pds5 from cohesin via acetylation of Smc3, a cohesin subunit. Taken together, the presented data suggest that Wpl1-Pds5 complex is inhibitory for cohesion establishment and that Eco1 establishes cohesion by hindering the function of Wpl1-Pds5 temporally in S phase.

Reference Type
Journal Article
Authors
Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference