Take our Survey

Reference: McManus KJ, et al. (2009) Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci U S A 106(9):3276-81

Reference Help

Abstract


Mutations that cause chromosome instability (CIN) in cancer cells produce "sublethal" deficiencies in an essential process (chromosome segregation) and, therefore, may represent a major untapped resource that could be exploited for therapeutic benefit in the treatment of cancer. If second-site unlinked genes can be identified, that when knocked down, cause a synthetic lethal (SL) phenotype in combination with a somatic mutation in a CIN gene, novel candidate therapeutic targets will be identified. To test this idea, we took a cross species SL candidate gene approach by recapitulating a SL interaction observed between rad54 and rad27 mutations in yeast, via knockdown of the highly sequence- and functionally-related proteins RAD54B and FEN1 in a cancer cell line. We show that knockdown of RAD54B, a gene known to be somatically mutated in cancer, causes CIN in mammalian cells. Using high-content microscopy techniques, we demonstrate that RAD54B-deficient human colorectal cancer cells are sensitive to SL killing by reduced FEN1 expression, while isogenic RAD54B proficient cells are not. This conserved SL interaction suggests that extrapolating SL interactions observed in model organisms for homologous genes mutated in human cancers will aid in the identification of novel therapeutic targets for specific killing of cancerous cells exhibiting CIN.

Reference Type
Journal Article
Authors
McManus KJ, Barrett IJ, Nouhi Y, Hieter P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference