Take our Survey

Reference: Hochstrasser M, et al. (2008) Molecular genetics of the ubiquitin-proteasome system: lessons from yeast. Ernst Schering Found Symp Proc (1):41-66

Reference Help

Abstract

Our studies with the yeast Saccharomyces cerevisiae have uncovered a number of general principles governing substrate selectivity and proteolysis by the ubiquitin-proteasome system. The initial work focused on the degradation of a transcription factor, the MATalpha2 repressor, but the pathways uncovered have a much broader range of targets. At least two distinct ubiquitination mechanisms contribute to alpha2 turnover. One of them depends on a large integral membrane ubiquitin ligase (E3) and a pair of ubiquitin-conjugating enzymes (E2s). The transmembrane E3 and E2 proteins must travel from their site of synthesis in the ER to the inner nuclear membrane in order to reach nuclear substrates such as alpha2. The 26S proteasome is responsible for alpha2 degradation, and several important features of proteasome assembly and active site formation were uncovered. Most recently, we have delineated major steps in 20S proteasome assembly and have also identified several novel 20S proteasome assembly factors. Surprisingly, alterations in 20S proteasome assembly lead to defects in the assembly of the proteasome regulatory particle (RP). The RP associates with the 20S proteasome to form the 26S proteasome. Our data suggest that the 20S proteasome can function as an assembly factor for the RP, which would make it the first such factor for RP assembly identified to date.

Reference Type
Journal Article
Authors
Hochstrasser M, Deng M, Kusmierczyk AR, Li X, Kreft SG, Ravid T, Funakoshi M, Kunjappu M, Xie Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference