Reference: Gallagher JE, et al. (2009) Elaboration, diversification and regulation of the sir1 family of silencing proteins in Saccharomyces. Genetics 181(4):1477-91

Reference Help

Abstract


Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. S. cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC Interacting Region (OIR), which binds the Bromo Adjacent Homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2 and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions.

Reference Type
Journal Article
Authors
Gallagher JE, Babiarz JE, Teytelman L, Wolfe KH, Rine J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference