Take our Survey

Reference: Kniewel R and Keeney S (2009) Histone methylation sets the stage for meiotic DNA breaks. EMBO J 28(2):81-3

Reference Help

Abstract


Covalent post-translational modifications of histones have important functions in transcription, replication, repair, and other aspects of eukaryotic chromosome dynamics. Trimethylation of lysine-4 on histone H3 is enriched at actively transcribed loci in many organisms. The impact of this histone modification on transcription has been extensively studied, but less is known about its effects on other chromosomal processes. An intriguing new study in this issue of EMBO Journal demonstrates that H3 lysine-4 trimethylation is critical in budding yeast for formation of the programmed DNA double-strand breaks that initiate homologous recombination during meiosis. These findings have important implications for elucidating the previously recognized but little understood connections between meiotic break formation and transcriptional promoters in this organism.

Reference Type
Comment | Journal Article | Research Support, Non-U.S. Gov't
Authors
Kniewel R, Keeney S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference