Take our Survey

Reference: Hishida T, et al. (2009) RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457(7229):612-5

Reference Help

Abstract


In nature, organisms are exposed to chronic low-dose ultraviolet light (CLUV) as opposed to the acute high doses common to laboratory experiments. Analysis of the cellular response to acute high-dose exposure has delineated the importance of direct DNA repair by the nucleotide excision repair pathway and for checkpoint-induced cell cycle arrest in promoting cell survival. Here we examine the response of yeast cells to CLUV and identify a key role for the RAD6-RAD18-RAD5 error-free postreplication repair (RAD6 error-free PRR) pathway in promoting cell growth and survival. We show that loss of the RAD6 error-free PRR pathway results in DNA-damage-checkpoint-induced G2 arrest in CLUV-exposed cells, whereas wild-type and nucleotide-excision-repair-deficient cells are largely unaffected. Cell cycle arrest in the absence of the RAD6 error-free PRR pathway was not caused by a repair defect or by the accumulation of ultraviolet-induced photoproducts. Notably, we observed increased replication protein A (RPA)- and Rad52-yellow fluorescent protein foci in the CLUV-exposed rad18Delta cells and demonstrated that Rad52-mediated homologous recombination is required for the viability of the rad18Delta cells after release from CLUV-induced G2 arrest. These and other data presented suggest that, in response to environmental levels of ultraviolet exposure, the RAD6 error-free PRR pathway promotes replication of damaged templates without the generation of extensive single-stranded DNA regions. Thus, the error-free PRR pathway is specifically important during chronic low-dose ultraviolet exposure to prevent counter-productive DNA checkpoint activation and allow cells to proliferate normally.

Reference Type
Journal Article
Authors
Hishida T, Kubota Y, Carr AM, Iwasaki H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference