Take our Survey

Reference: Villa NY, et al. (2009) Sphingolipids function as downstream effectors of a fungal PAQR. Mol Pharmacol 75(4):866-75

Reference Help

Abstract

The Izh2p protein from Saccharomyces cerevisiae belongs to the newly characterized PAQR superfamily of receptors whose mechanism of signal transduction is still unknown. Izh2p functions as a receptor for the plant PR-5 defensin osmotin and has pleiotropic effects cellular biochemistry. One example of this pleiotropy is the Izh2p-dependent repression of FET3, a gene involved in iron-uptake. While the physiological purpose of FET3 repression by Izh2p is a matter of speculation, it provides a reporter with which to probe the mechanism of signal transduction by this novel class of receptor. Receptors in the PAQR family share sequence similarity with enzymes involved in ceramide metabolism, which led to the hypothesis that sphingolipids are involved in Izh2p-dependent signaling. In this study, we demonstrate that drugs affecting sphingolipid metabolism, such as D-erythro-MAPP and myriocin, inhibit the effect of Izh2p on FET3. We also show that Izh2p causes an increase in steady state levels of sphingoid base. Moreover, we show that Izh2p-independent increases in sphingoid bases recapitulate the effect of Izh2p on FET3. Finally, our data indicate that the Pkh1p and Pkh2p sphingoid-base sensing kinases are essential components of the Izh2p-dependent signaling pathway. In conclusion, our data indicate that Izh2p produces sphingoid bases and that these bioactive lipids likely function as the second messenger responsible for the effect of Izh2p on FET3.

Reference Type
Journal Article
Authors
Villa NY, Kupchak BR, Garitaonandia I, Smith JL, Alonso E, Alford C, Cowart LA, Hannun YA, Lyons T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference