Reference: Hwang-Shum JJ, et al. (1991) Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. Mol Gen Genet 227(2):197-204

Reference Help

Abstract

We have examined the relative contributions of MCM1 and STE12 to the transcription of the a-specific STE2 gene by using a 367 bp fragment from the STE2 5'-noncoding region to drive expression of a reporter lacZ gene. Mutation of the MCM1 binding site destroyed MCM1.alpha 2-mediated repression in alpha cells and dramatically reduced expression in a cells. The residual expression was highly stimulated by exposure of cells to pheromone. Likewise, the loss of STE12 function reduced lacZ expression driven by the wild-type STE2 fragment. In the absence of both MCM1 and STE12 functions, no residual expression was observed. Thus, the STE2 fragment appears to contain two distinct upstream activation sequences (UASs), one that is responsible for the majority of expression in cells not stimulated by pheromone, and one that is responsible for increased expression upon pheromone stimulation. In further support of this idea, a chemically synthesized version of the STE2 MCM1 binding site had UAS activity, but the activity was neither stimulated by pheromone nor reduced in ste12 mutants. Although transcription of alpha-specific genes also requires both MCM1 and STE12, these genes differ from a-specific genes in that they have a single, MCM1-dependent UAS system. The activity of the minimal 26 bp UAS from the alpha-specific STE3 gene was both stimulated by pheromone and reduced in ste12 mutants. These data suggest that at alpha-specific genes STE12 and MCM1 exert their effects through a single UAS.

Reference Type
Journal Article
Authors
Hwang-Shum JJ, Hagen DC, Jarvis EE, Westby CA, Sprague GF Jr
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference