Reference: Lelandais G, et al. (2008) Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 9(11):R164

Reference Help

Abstract


ABSTRACT: BACKGROUND: Recent technical and methodological advances have placed microbial models at the forefront of evolutionary and environmental genomics. To better understand the logic of genetic network evolution, we combined comparative transcriptomics, differential clustering algorithm and promoter analyses in a study of the evolution of transcriptional networks responding to an antifungal agent in two yeast species: the free-living model organism Saccharomyces cerevisiae and the human pathogen Candida glabrata. RESULTS: We found that, although the gene expression patterns characterizing the response to drugs were remarkably conserved between the two species, part of the underlying regulatory networks differed. In particular, the roles of the oxidative stress response transcription factors ScYap1p (in S. cerevisiae) and Cgap1p (in C. glabrata) had diverged. The sets of genes, which benomyl response depend on these factors, are significantly different. Also, the DNA motifs targeted by ScYap1p and Cgap1p are differently represented in the promoters of these genes, suggesting that the DNA binding properties of the two proteins are slightly different. Experimental assays of ScYap1p and Cgap1p activities in vivo were in accordance with this last observation. CONCLUSIONS: Based on these results and recently published data, we suggest that the robustness of environmental stress responses among related species contrasts with the rapid evolution of regulatory sequences, and depends both on the coevolution of transcription factor binding properties and on the versatility of regulatory associations within transcriptional networks.

Reference Type
Journal Article
Authors
Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference