Reference: Gammie AE (2008) Ultrastructural analysis of cell fusion in yeast. Methods Mol Biol 475:197-211

Reference Help

Abstract

The process of creating a single cell from two progenitor cells requires molecular precision to coordinate the events leading to cytoplasmic continuity while preventing lethal cell lysis. Cell fusion characteristically involves the mobilization of fundamental processes, including signaling, polarization, adhesion, and membrane fusion. The yeast Saccharomyces cerevisiae is an ideal model system for examining the events of this critical and well-conserved process. Researchers employ yeast cells because they are rapidly growing, easy to manipulate, amenable to long-term storage, genetically tractable, readily transformed, and nonhazardous. The genetic and morphological characterizations of cell fusion in wild-type and fusion mutants have helped define the mechanism and temporal regulation required for efficient cell fusion. Ultrastructural studies, in particular, have contributed to the characterization of and revealed striking similarities within cell fusion events in higher organisms. This chapter details two yeast cell fusion ultrastructural methods. The first utilizes an ambient temperature chemical fixation, and the second employs a combination of high-pressure freezing and freeze substitution.

Reference Type
Journal Article
Authors
Gammie AE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference