Take our Survey

Reference: Mondal UK, et al. (2008) Nucleotide Triplet Based Molecular Phylogeny of Class I and Class II Aminoacyl t-RNA Synthetase in Three Domain of Life Process: Bacteria, Archaea, and Eukarya. J Biomol Struct Dyn 26(3):321-8

Reference Help

Abstract


The aminoacyl-tRNA synthetases are one of the major protein components in the translation machinery. These essential proteins are found in all forms of life and are responsible for charging their cognate tRNAs with the correct amino acid. These important enzymes have been the subject of intense scientific inquiry for nearly half a century, but their complete evolutionary history has yet to emerge. Amino acids sequence based phylogeny has some limitation due to very low sequence similarity amongst the different tRNA synthetases and structure based phylogeny has also its limitation. In our study, tRNA nucleotide sequences of E. coli K12 (Bacteria), Saccharomyces cerevisiae (Eukarya), Thermococcus kodakaraensis KOD1, and Archaeoglobus fulgidus DSM 4304 (Archaea) were used for phylogenetic analysis. Our results complement the observation with the earlier studies based on multiple sequence alignment and structural alignment. We observed that relationship between archaeal tRNA synthetases are different that of bacteria and eucarya. Violation of Class rule of LysRS is observed here also. The uniqueness of this method is that it does not employ sequence alignment of complete nucleotide sequence of the corresponding gene.

Reference Type
Journal Article
Authors
Mondal UK, Das B, Ghosh TC, Sen A, Bothra AK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference