Take our Survey

Reference: Pretorius IS, et al. (1991) The glucoamylase multigene family in Saccharomyces cerevisiae var. diastaticus: an overview. Crit Rev Biochem Mol Biol 26(1):53-76

Reference Help

Abstract

Saccharomyces cerevisiae has been used widely both as a model system for unraveling the biochemical, genetic, and molecular details of gene expression and the secretion process, and as a host for the production of heterologous proteins of biotechnological interest. The potential of starch as a renewable biological resource has stimulated research into amylolytic enzymes and the broadening of the substrate range of S. cerevisiae. The enzymatic hydrolysis of starch, consisting of linear (amylose) and branched glucose polymers (amylopectin), is catalyzed by alpha- and beta-amylases, glucoamylases, and debranching enzymes, e.g., pullulanases. Starch utilization in the yeast S. cerevisiae var. diastaticus depends on the expression of the three unlinked genes, STA1 (chr. IV), STA2 (chr. II), and STA3 (chr. XIV), each encoding one of the extracellular glycosylated glucoamylases isozymes GAI, GAII, or GAIII, respectively. The restriction endonuclease maps of STA1, STA2, and STA3 are identical. These genes are absent in S. cerevisiae, but a related gene, SGA1, encoding an intracellular, sporulation-specific glucoamylase (SGA), is present. SGA1 is homologous to the middle and 3' regions of the STA genes, but lacks a 5' sequence that encodes the domain for secretion of the extracellular glucoamylases. The STA genes are positively regulated by the presence of three GAM genes. In addition to positive regulation, the STA genes are regulated negatively at three levels. Whereas strains of S. diastaticus are capable of expressing the STA genes, most strains of S. cerevisiae contain STA10, whose presence represses the expression of the STA genes in an undefined manner. The STA genes are also repressed in diploid cells, presumably by the MATa/MAT alpha-encoded repressor. STA gene expression is reduced in liquid synthetic media, it is carbon catabolite repressed by glucose, and is inhibited in petite mutants.

Reference Type
Journal Article | Review | Review, Academic
Authors
Pretorius IS, Lambrechts MG, Marmur J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference