Reference: Eirin-Lopez J and Ausio J (2007) H2A.Z-Mediated Genome-Wide Chromatin Specialization. Curr Genomics 8(1):59-66

Reference Help

Abstract


The characterization of the involvement of different histone post-translational modifications (PTMs) and histone variants in chromatin structure has represented one of the most recurrent topics in molecular biology during the last decade (since 1996). The interest in this topic underscores the critical roles played by chromatin in such important processes as DNA packaging, DNA repair and recombination, and regulation of gene expression. The genomic information currently available has pushed the boundaries of this research a step further, from the study of local domains to the genome-wide characterization of the mechanisms governing chromatin dynamics. How the heterchromatin and euchromatin compartmentalization is established has been the subject of recent extensive research. Many PTMs, as well as histone variants have been identified to play a role, including the replacement of histone H2A by the histone variant H2A.Z. Several studies have provided support to a role for H2A.Z (known as Htz1 in yeast) in transcriptional regulation, chromosome structure, DNA repair and heterochromatin formation. Although the mechanisms by which H2A.Z defines different structural regions in the chromatin have long remained elusive, various reports published last year have shed new insight into this process. The present mini review focuses its attention on the genome-wide distribution of H2A.Z, with special attention to the mechanisms involved in its distribution and exchange as well as on the role of its N-terminal acetylation.

Reference Type
Journal Article
Authors
Eirin-Lopez J, Ausio J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference