Take our Survey

Reference: Yang B, et al. (2008) Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae. J Mol Biol 381(4):826-44

Reference Help

Abstract

Silent chromatin formation in Saccharomyces cerevisiae begins with the recruitment of silent information regulator (Sir) proteins to silencers at the silent mating-type loci and to telomere ends. Next, Sir2/3/4 proteins propagate across these loci as histones are deacetylated by the NAD(+)-dependent histone deacetylase Sir2p, ultimately resulting in the cessation of transcription and in the loss of SET1- and DOT1-dependent methylation of histone H3 within silent chromatin. We analyzed the effects of modifiable lysine residues on histones H3 and H4 on experimentally defined steps in silencing: recruitment of Sir proteins to silencers, Sir protein spreading, and transcriptional repression. Loss of acetylation, but not methylation, facilitated both Sir recruitment and spreading, and Sir spreading across hypoacetylated chromatin could disrupt SET1- and DOT1-dependent histone methylation without silencing underlying genes. Our data indicate that loss of methylation of K4 and K79 on histone H3 reflects intermediate events during the formation of silent chromatin, and that retention of a positive charge at a single residue on histone H4 (K16) was both necessary and sufficient to permit Sir spreading beyond sites of their recruitment.

Reference Type
Journal Article
Authors
Yang B, Britton J, Kirchmaier AL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference