Take our Survey

Reference: Dienhart MK and Stuart RA (2008) The Yeast Aac2 Protein Exists in Physical Association with the Cytochrome bc1-COX Supercomplex and the TIM23 Machinery. Mol Biol Cell 19(9):3934-43

Reference Help

Abstract

Monitoring Editor: Janet M. Shaw The ADP/ATP carrier (AAC) proteins play a central role in cellular metabolism as they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. We present evidence here that in yeast (S. cerevisiae) mitochondria the abundant Aac2 isoform exists in physical association with the cytochrome bc1-cytochrome c oxidase (COX) supercomplex and its associated TIM23 machinery. Using a His-tagged Aac2 derivative and affinity purification studies, we also demonstrate here that the Aac2 isoform can be affinity purified with other AAC proteins. Copurification of the Aac2 protein with the TIM23 machinery can occur independently of its association with the fully assembled cytochrome bc1-COX supercomplex. In the absence of the Aac2 protein, the assembly of the cytochrome bc1-COX supercomplex is perturbed, whereby a decrease in the III2-IV2 assembly state relative to the III2-IV form is observed. We propose that the association of the Aac2 protein with the cytochrome bc1-COX supercomplex is important for the function of the OXPHOS complexes and for the assembly of the COX complex. The physiological implications of the association of AAC with the cytochrome bc1-COX-TIM23 supercomplex are also discussed.

Reference Type
Journal Article
Authors
Dienhart MK, Stuart RA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference