Reference: Ranilla LG, et al. (2008) Antidiabetes and Antihypertension Potential of Commonly Consumed Carbohydrate Sweeteners Using In Vitro Models. J Med Food 11(2):337-348

Reference Help

Abstract

ABSTRACT Commonly consumed carbohydrate sweeteners derived from sugar cane, palm, and corn (syrups) were investigated to determine their potential to inhibit key enzymes relevant to Type 2 diabetes and hypertension based on the total phenolic content and antioxidant activity using in vitro models. Among sugar cane derivatives, brown sugars showed higher antidiabetes potential than white sugars; nevertheless, no angiotensin I-converting enzyme (ACE) inhibition was detected in both sugar classes. Brown sugar from Peru and Mauritius (dark muscovado) had the highest total phenolic content and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, which correlated with a moderate inhibition of yeast alpha-glucosidase without showing a significant effect on porcine pancreatic alpha-amylase activity. In addition, chlorogenic acid quantified by high-performance liquid chromatography was detected in these sugars (128 +/- 6 and 144 +/- 2 mug/g of sample weight, respectively). Date sugar exhibited high alpha-glucosidase, alpha-amylase, and ACE inhibitory activities that correlated with high total phenolic content and antioxidant activity. Neither phenolic compounds or antioxidant activity was detected in corn syrups, indicating that nonphenolic factors may be involved in their significant ability to inhibit alpha-glucosidase, alpha-amylase, and ACE. This study provides a strong biochemical rationale for further in vivo studies and useful information to make better dietary sweetener choices for Type 2 diabetes and hypertension management.

Reference Type
Journal Article
Authors
Ranilla LG, Kwon YI, Genovese MI, Lajolo FM, Shetty K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference