Reference: Ward LD and Bussemaker HJ (2008) Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences. Bioinformatics 24(13):i165-71

Reference Help

Abstract

MOTIVATION: The identification of transcription factor (TF) binding sites and the regulatory circuitry that they define is currently an area of intense research. Data from whole-genome chromatin immunoprecipitation (ChIP-chip), whole-genome expression microarrays, and sequencing of multiple closely related genomes have all proven useful. By and large, existing methods treat the interpretation of functional data as a classification problem (between bound and unbound DNA), and the analysis of comparative data as a problem of local alignment (to recover phylogenetic footprints of presumably functional elements). Both of these approaches suffer from the inability to model and detect low-affinity binding sites, which have recently been shown to be abundant and functional. RESULTS: We have developed a method that discovers functional regulatory targets of TFs by predicting the total affinity of each promoter for those factors and then comparing that affinity across orthologous promoters in closely related species. At each promoter, we consider the minimum affinity among orthologs to be the fraction of the affinity that is functional. Because we calculate the affinity of the entire promoter, our method is independent of local alignment. By comparing with functional annotation information and gene expression data in Saccharomyces cerevisiae, we have validated that this biophysically motivated use of evolutionary conservation gives rise to dramatic improvement in prediction of regulatory connectivity and factor-factor interactions compared to the use of a single genome. We propose novel biological functions for several yeast TFs, including the factors Snt2 and Stb4, for which no function has been reported. Our affinity-based approach towards comparative genomics may allow a more quantitative analysis of the principles governing the evolution of non-coding DNA. AVAILABILITY: The MatrixREDUCE software package is available from http://www.bussemakerlab.org/software/MatrixREDUCE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Ward LD, Bussemaker HJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference