Take our Survey

Reference: Ciesla M and Boguta M (2008) Regulation of RNA polymerase III transcription by Maf1 protein. Acta Biochim Pol 55(2):215-25

Reference Help

Abstract


Maf1 was the first protein discovered to regulate polymerase III RNA in yeast and because it is evolutionarily conserved, Maf1 ortholog also serves to restrain transcription in mouse and human cells. Understanding the mechanism of the regulation has been made possible by recent studies showing that Maf1 is a nuclar/cytoplasmic protein whose subcellular distribution and hence negative regulation of Pol III transcription is mediated by the nutrient-sensing signaling pathways, TOR and RAS. Under stress conditions and during growth in a nonfermentable carbon source Maf1 is dephosphorylated and imported to the nucleus. In its non-phosphorylated form, Maf1 interacts with the polymerase III transcription machinery. Phosphorylation serves to locate Maf1 to the cytoplasm under favorable growth conditions, thereby preventing it from non-negatively regulating polymerase III when high levels of tRNA transcription are required. Relocation of Maf1 to the cytoplasm is dependent on Msn5, a carrier responsible for export of several other phosphoproteins out of the nucleus. The absence of Maf1-mediated control of tRNA synthesis impairs yeast viability in nonfermentable carbon sources. Moreover, in cells grown in a nonfermentable carbon source, Maf1 regulates the levels of different tRNAs to various extents. This differential regulation may contribute to the physiological role of Maf1.

Reference Type
Journal Article
Authors
Ciesla M, Boguta M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference