Take our Survey

Reference: Nariai N and Kasif S (2007) Context specific protein function prediction. Genome Inform 18:173-82

Reference Help

Abstract

Although whole-genome sequencing of many organisms has been completed, numerous newly discovered genes are still functionally unknown. Using high-throughput data such as protein-protein interaction (PPI) information to assign putative protein function to the unknown genes has been proposed, since in many cases it is not feasible to annotate the newly discovered genes by sequence-based approaches alone. In addition to PPI data, information such as protein localization within a cell may be employed to improve protein function prediction in two ways: 1) By using such localization information as a direct indicator of protein function (e.g. nucleolus localized proteins might be involved in ribosome biogenesis), and 2) by refining noisy PPI data by localization information. In the latter case, localization information may be used to distinguish different types of PPIs: Namely, interactions between co-localized proteins (more reliable), and interactions between differently localized proteins (potentially less reliable). In this paper, we propose a probabilistic method to predict protein function from PPI data and localization information. A Bayesian network is used to model dependencies between protein function, PPI data and localization information. We showed in our cross-validation experiment that in some cases, our method (conditioning PPI data by localization information) significantly improves prediction precision, as compared to a simple Naive Bayes method that assumes PPI data and localization information are conditionally independent given protein function. Finally, we predicted 57 unknown genes as "ribosome biogenesis" proteins.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Nariai N, Kasif S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference