Take our Survey

Reference: Hahn S, et al. (2008) Classical NLS proteins from Saccharomyces cerevisiae. J Mol Biol 379(4):678-94

Reference Help

Abstract

Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin alpha (Impalpha), which possesses the cNLS binding site, and importin beta (Impbeta), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impalpha and Impbeta mutants, direct binding to purified Impalpha, and stimulation of this binding by Impbeta. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impalpha. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/alpha/beta complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impalpha binding. Impbeta enhances the affinity of Impalpha for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impalpha results from a faster association in the presence of Impbeta, whereas the dissociation rate is unaffected by Impbeta. This implies that, after entry into the nucleus, the release of Impbeta by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impalpha subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impalpha in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.

Reference Type
Journal Article
Authors
Hahn S, Maurer P, Caesar S, Schlenstedt G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference