Reference: Fankhauser C and Conzelmann A (1991) Purification, biosynthesis and cellular localization of a major 125-kDa glycophosphatidylinositol-anchored membrane glycoprotein of Saccharomyces cerevisiae. Eur J Biochem 195(2):439-48

Reference Help

Abstract


The yeast Saccharomyces cerevisiae has been shown to contain a major 125-kDa membrane glycoprotein which is anchored in the lipid bilayer by a glycophosphatidylinositol anchor. This protein was purified to near homogeneity and was used to raise a rabbit antibody. Biosynthesis of the 125-kDa protein was studied by immunoprecipitation of 35SO4-labeled material from wild-type cells or a secretion mutant (sec18) in which the vesicular traffic from the endoplasmic reticulum (ER) to the Golgi is blocked. The 125-kDa protein is first made in the ER as a 105-kDa precursor which already contains a glycophosphatidylinositol anchor and which is slowly transformed into the 125-kDa form upon chase (t1/2 approximately 10-15 min). The 105-kDa precursor can be reduced to an 83-kDa form by the enzymatic removal of N-glycans. The removal of N-glycans from the mature 125-kDa protein yields a 95-kDa species. Thus, removal of the N-glycans does not reduce the ER and mature forms to the same molecular mass, indicating that not only elongation of N-glycans but also another post-translational modification takes place during maturation. Selective tagging of surface proteins by treatment of 35SO4-labeled cells with trinitrobenzene sulfonic acid at 0 C followed by immunoprecipitation of the tagged proteins shows that the 125-kDa protein, but not the 105-kDa precursor, becomes transported to the cell surface. This tagging of cells after various lengths of chase also shows that the surface appearance of the protein is biphasic with about one half of the mature 125-kDa protein remaining intracellular for over 2 h. Glycosylation and/or glycophosphatidylinositol anchor addition is important for the stability of the 125-kDa protein since the protein remains undetectable in sec53, a temperature-sensitive mutant which does not make GDP-mannose at 37 C and does not add glycophosphatidylinositol anchors at 37 degrees C.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fankhauser C, Conzelmann A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference