Take our Survey

Reference: Xiao Z, et al. (2008) Transfer of copper between bis(thiosemicarbazone) ligands and intracellular copper-binding proteins. insights into mechanisms of copper uptake and hypoxia selectivity. Inorg Chem 47(10):4338-47

Reference Help

Abstract


Bis(thiosemicarbazonato) complexes Cu(II)(Btsc) have attracted interest as promising metallodrugs and, in particular, as copper radiopharmaceuticals. Prototypes Cu(Atsm) and Cu(Gtsm) are membrane-permeable, but their metabolisms in cells are distinctly different: copper that is delivered by Cu(Gtsm) is trapped nonselectively in all cells, whereas copper that is delivered by Cu(Atsm) is retained selectively in hypoxic cells but is "washed out" readily in normal cells. We have studied copper-transfer reactions of these two complexes under various conditions, aiming to model their cellular chemistry. In Me2SO, both complexes exhibited reversible one-electron-reduction processes with Cu(Atsm) being more difficult to reduce than Cu(Gtsm) (E(1/2)'=-0.60 and -0.44 V, respectively, vs AgCl/Ag). Upon introduction of an aqueous buffer into Me2SO, the electrochemical reduction remained chemically reversible for Cu(Atsm) but became irreversible for Cu(Gtsm). However, the estimated difference in their reduction potentials did not change. Chromophoric ligand anions bicinchonate (Bca) and bathocuproine disulfonate (Bcs) were used as Cu(I) indicators to trace the destinations of copper in the reactions and to mimic cellular Cu(I)-binding components ("sinks"). While both BtscH2 ligands have high affinities for Cu(I) (KD in the picomolar range), they cannot compete with Cu(I) sinks such as the copper-binding proteins Atx1 and Ctr1c (or a mimic such as Bcs). In the presence of these proteins, reduction of Cu(II)(Btsc) leads to irreversible transfer of copper to the protein ligands. Endogenous reductants ascorbate and glutathione can reduce Cu(II)(Gtsm) in the presence of such protein ligands but cannot reduce Cu(II)(Atsm). These properties establish a strong correlation between the contrasting cellular retention properties of these complexes and their different reduction potentials. The endogenous reductants in normal cells appear to be able to reduce Cu(II)(Gtsm) but not Cu(II)(Atsm), allowing the latter to be washed out. The more reducing environment of hypoxic cells leads to reduction of Cu(II)(Atsm) and retention of its copper.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Xiao Z, Donnelly PS, Zimmermann M, Wedd AG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference